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LIFTING-SURFACE THEORY FOR CALCULATING THE LOADING 

INDUCED ON A WING BY  A FLAP 

Wayne Johnson 

Ames  Research  Center 
and 

U.S. Army Air Mobility  Research and  Development  Laboratory 

SUMMARY 

A method is described for using  lifting-surface theory to obtain the pressure  distribution on a 
wing with  a trailing-edge flap  or  control  surface.  The  loading  has  a  logarithmic  singularity  at  the  flap 
edges, which  may be determined  directly  by  the  method  of  matched  asymptotic  expansions. 
Expressions are given for  the singular  flap  loading for various  flap  hinge  line  and  side  edge 
geometries,  both  for  steady  and  unsteady  flap  deflection.  The  regular  part  of  the  flap  loading  must 
be  obtained  by  inverting  the  lifting-surface-theory  integral  equation  relating  the  pressure  and  the 
downwash  on  the  wing;  procedures  are  described  to  accomplish  this  for  a  general wing and  flap 
geometry.  The  method is applied to  several example wings, and  the  results  are  compared  with 
experimental  data.  Theory  and  test  correlate well. 

INTRODUCTION 

Methods  have  been  developed  (e.g., refs. 1 and 2)  for  the  application  of  lifting-surface  theory 
to wings of  various  configurations:  planar  and  nonplanar wings, one wing or  several,  and  steady  and 
unsteady  flow.  These  methods,  however, have not been  able to  accurately  handle  a wing with  a 
trailing-edge flap.  The  lifting-surface-theory  integral  equation  relating  the  pressure to the  downwash 
at  the wing  is inverted  by  assuming  the  loading  may be represented  by  a  linear  combination  of 
suitable  preselected  pressure  functions. Because of the large amount  of  numerical  computation 
involved, it is important  that  only a  few  modes be used t o  give the loading  accurately,  and  this is 
possible only if the preselected  pressure  functions  match  the  true  loading  as closely  as  possible. The 
wing with  a trailing-edge flap  has  a  logarithmic  singularity  in  the  pressure  at  the  flap  hinge line and 
side  edges, and  it is the  difficulty in accurately  representing  this  singular  behavior  by  the  usual 
loading  functions  that  has  prevented  the  practical  application  of  lifting-surface  theory to such 
wings. 

Landahl  (ref. 3) has  shown  that  with  the  aid  of  the  method  of  matched  asymptotic  expansions 
the singular  loading  behavior  near the  flap  edges  can  be  obtained  from  simple  steady  flow  problems 
in  two  and  three  dimensions.  The  singular  part of the loading is not influenced  by  boundary 
conditions  because  of  the  presence of the  other edges of  the wing or  flap.  Consequently,  the 
strength  of  the  singularity  at  the  flap  edge is determined  uniquely  by  the  flap  deflection  and 
motion.  Thus  the  pressure  loading  due to   the flap  may  be  written as the  sum  of a known  singular 
part  and  an  unknown regular  part.  The  regular  part  must still be  obtained  by  inverting  the 
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lifting-surface-theory  integral  equation.  However,  the  regular  part  may  now be  accurately 
represented  by  pressure  modes  of the usual type,  and  the  solution  for  these  follows  the  standard 
techniques  of  lifting-surface  theory. 

Landahl  only gives the singular  part  of the pressure  distribution  for  a  few  flap  edge  geometries. 
Some  recent  works  (refs. 4 and 5) have  considered  the  use  of  the  singular  flap  pressure  mode  in 
lifting-surface  theory, but have not carried  the  results  far  enough  to  obtain  actual  flap-induced 
loadings.  This  report  gathers  the  results  of  lifting-surface  theory  and.  the  flap  pressure  modes, 
extending  them  where  necessary, t o  present  a  procedure  that will allow  researchers to  use the ideas 
and  techniques  to  obtain  the  loading  on  a  wing  with  a  trailing-edge  flap.  The  principal  idea  is  the  use 
of  the  known  singular  flap  pressure  mode  (Landahl) in the  kernel  function  approach  to 
lifting-surface  theory. Much attention  is given to the details  of  the  actual  numerical  procedures 
involved,  since the  numerical  difficulties  are  the  primary  obstacle  between  the  knowledge  of  the 
flap pressure  mode  and the  solution  for  the wing  loading.  The  first  section  outlines  one.method  for 
solving the  lifting-surface-theory  integral  equation;  the  next  section  extends  this  method t o  include 
a wing with  a  flap or  control  surface.  Then  expressions  are given that  may  be used to  construct  the 
singular flap  pressure  function  for  any wing and  flap  geometry.  Finally  the  method  presented is 
applied to several wings and  the  results  compared  with  some  experimental  data. 

OUTLINE O F  LIFTING-SURFACE  THEORY 

The   t echn iques   o f   l i nea r ,  potential 
aerodynamics  may  be  used t o  relate  the  differential 
pressure on a  thin wing surface to  the  downwash  at 

xLE(s) the wing by  an  integral  equation  of  the  form 

The wing  (fig. 1 ) may  consist, in general,  of several 
nonplanar wing surfaces,  although  for  simplicity  of 
notation  only  one wing will be considered  here. 
The  linear  problem  replaces  each  thin wing by  a 
surface  of  zero  thickness; in general,  each  surface is 

~7 a  cylinder  with  generators  parallel  to  the 
free-stream  velocity  U  (the  x  axis).  The  pressure 
due  to  the wing thickness is a  direct  problem, 
which  may  be  separated  from  the  lifting  problem, 
and is not  considered  here.  The  unsteady  problem 

Figure 1 .- Geometry of the wing surface. only  considers  sinusoidal  time  variation  of  the 
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velocity  and  pressure, so a factor  eiut  has  been  suppressed  from  the  integral  equation.  The 
downwash  due  to  the  external  flow,  normal to the wing surface, is Vn =Vneiut.  The  differential 
pressure on  the wing surface, in the  lifting  direction, is -Ap = -Apelut.  The  kernel  function K is the 
downwash  at  the  point  (x,s)  due  to  the  pressure  at  the  point (5:p). Since the  downwash is the 
known  quantity  and  the  pressure the  unknown, this  is  an  indirect  problem;  the  inversion  of  the 
integral  equation  for  the  pressure is the  primary  difficulty  of  lifting-surface  theory,  and several 
methods  and  variations  of  methods  have  been  developed to overcome  it. A derivation  and  further 
discussion  of  the  integral  equation  and the kernel  may  be  found,  for  example, in references  1 , 2, 
and 6. 

" . 

The  method  of solving the  integral  equation  to  be used here  follows  closely  that  detailed  in 
reference 1.  The wing surface is normalized  by  transforming  from  the  variables ( tp )  to  the variables 
(e ,x): 

5: = x(u) + b(o)cos !3 
- 

where 

The  pressure is expanded  as a series  of  the  form 

m=o n=o 

where  the  chordwise  and  spanwise  pressure  modes  are  typically  of  the  form  (for a symmetrical wing 
and  downwash  distribution) 

These  modes  have  the  proper  behavior  near  the edges of  the  wing;  for  typical  downwash 
distributions  and wing planforms,  only  the  first  few  modes  are  required  to  describe  the  pressure 
distribution  adequately. I f  only  a  finite  number  of  pressure  modes  are  considered  and  the  integral 
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equation  is  satisfied  only  at  a  finite  number  of  collocation  points  (xi,sj),  the  integral  equation  is 
converted to a  set of simultaneous  linear  algebraic  equations 

The  collocation  points  are  distributed  over  the  wing  surface  by  a  uniform  rectangular  matrix  in  the 
( @ J )  system 

sj = sTIplj, Zj = jAZ, j = 1 ,  2, . . ., N4 (1 1) 

where 

A+ = 
2rr 

2N3 + 1 

1 A1 = - 
N4 + 1 

The  number  of  collocation  points is usually  taken  larger  than  the  number  of  pressure  modes,  and 
the  system  of  equations is inverted in a  least  squares  sense for  a given vn to  find  anm.  The  pressure 
distribution  may  then  be  integrated  to  find  the  forces  acting  on  the wing  (e.g., the  section  lift  and 
moment)  and  the  total wing lift  and  moment. 

The  coefficients  of  the  algebraic  equations,  (Inm)ij,  are  integrals  over  the wing surface  of  the 
pressure  modes  times  the  kernel  function;  they  are  the  downwash  at  the  collocation  point  (xi,sj) 
due  to  the pressure  mode anm. These  integrals  must  be  evaluated  numerically,  and  with  some  care 
since  the  kernel  function is singular  as  the  integration  point  approaches  the  collocation  point.  The 
kernel  function  may  be  written  as 

where  has no spanwise  singularity;  at  the  spanwise  station  of  the  collocation  point  (rl = 0) does 
have a chordwise  discontinuity,  of  magnitude 2, at  the  collocation  point.  Thus  the  equation 
coefficients  are 
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a. Chordwise  integration 

0 

b. Spanwise  integration 

c. Spanwise  integration for more  complex  planforms 

Figure 2.- Numerical  integration  of  pressure 
modes  over wing surface. 

The  chordwise  integration is performed  first. If the 
spanwise station is a t  or close to the  collocation 
point, the discontinuity  in  requires  that the 
integration be broken  into  two intervals, one  ahead of 
and  one  behind the collocation  point (fig. 2(a)). 
Quantitatively  the  criterion  is  that  two  intervals  are 
used if r l  < 0.1  and  one  interval if rl ’ > 0.1. The 
integral  over  each  interval is evaluated  numerically by 
a  gaussian quadrature  over 8 .  Next the spanwise 
integration is performed.  The  spanwise  integration is 
broken  into  four intervals  (fig. 2(b)). It  is  broken  at 
the wing  centerline to allow for a  discontinuity  there 
in the wing  sweep (a kink).  Region 111 in figure  2(b) is 
a  narrow  strip  about  the  collocation  point of width 
2 ~ ,  where E is taken  as 30 percent  of  the  separation 
between  the  collocation  points: e = 0.3 Al. The 
integrals  in  regions  I, 11, and IV are well behaved  and 
are  readily  evaluated by gaussian quadratures  over 5. 
The  integrand  in  region 111 includes  the  spanwise rl 
singularity;  the  integral  over  this  interval is  a  singular 
integral of Mangler’s type. A technique  for  evaluating 
this  integral is detailed  in  reference 1 ; it involves 
approximating  the  regular  part  of  the  integrand  by  a 
seven-point Lagrange interpolation  polynomial,  and 
evaluating the integral of the  product  of rl-’ with  the 
polynomial using Mangler’s formulas. 

For wings with  discontinuities  in  sweep  angle,  the  spanwise  integral  should  also  be  broken  at 
each  kink (fig. 2(c)). In  general, the  technique of integration is to  divide  the wing surface  into 
panels, i n  the  interior of which the  integrand  has  entirely regular behavior. All singularities  and 
discontinuities.  due  either to  the kernel  function  or  to  the wing planform  shape,  are  kept  at  the 
edges of  the  panels.  The  integration  over  each  panel  (with  the  exception  of  the  panel  with  the rl-’ 
spanwise  singularity,  which is handled  separately  as  outlined  above) is performed  numerically  by  a 
gaussian quadrature,  which  has  the  property  of  concentrating  the  integration  points  near  the  ends  of 
the  interval while  avoiding the  integrand  exactly  at  the  end  points.  Moreover,  there  are  the  same 
number  of  quadrature  points i n  each  panel.  Therefore as the  planform  becomes  more  complex  the 
total  number of integration  points  automatically increases  because of the increase  in  number  of 
panels. 

The  collocation  points  should  be  distributed  separately i n  each wing  panel  between  planform 
discontinuities,  to  avoid  putting  points  at  or  near  the  kinks.  The  pressure  distribution will be 
changing  most  rapidly  near  such  kinks (to  put a collocation  point  there  would  emphasize  this  rapid 
change)  leading t o  a  poor  representation of the pressure if few collocation  points  and  pressure 
modes  are  used.  These  techniques of numerical  integration  and  placement of the  collocation  points 
will also  be  followed  when  the trailing-edge flap is introduced. 
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LIFTING-SURFACE  THEORY WITH A  TRAILING-EDGE  FLAP 

The  integral  equation  between  the  downwash 
and  pressure  (eq. (1)) is still the governing  equation 
for  a  wing  with  a  trailing-edge  flap.  A  typical wing 
geometry is shown in figure 3 ;  only  a  planar wing  is 
considered  for  the  flap  case, so s = y.  The  flap  hinge 
line is given by s 

X C  = X +  b[ 1 - ~ c & s ) ]  

= x + b c o s $ ,  
- 

(17) 

t 

Figure 3.- Geometry of wing  with  trailing-edge 
flap. 

where  cfis) is the  ratio  of  the  local  flap  chord  to  the 
local  wing  chord.  The  flap  pressure  functions  (to  be 
described  later)  require  that  xc  be  continuously 
defined  also  in wing panels  without  a  flap. 

The  downwash  due to  a  downward  flap  deflection 6 f =  &-eiwt is 

-6 f [ 1 + ik(x - xc)]  on  the  flap  surface 

off  the  flap  surface 

where the wave number k = w/U. Only  the  downwash  due  to  the  flap is considered.  The  downwash 
due  to wing  angle  of  attack,  camber,  heaving,  and  other wing motions  does  not involve the  flap  in 
any  way;  when  the  loading  due t o  this  downwash  has  been  obtained,  by  the  usual  methods,  it  may 
be  linearly  combined  with  the  flap  loading to  give the pressure on  the wing due  to  its  complete 
motion. 

The  pressure is again expanded  as  a  sum  of  modes. With the trailing-edge flap,  the  pressure 
distribution has a  logarithmic  singularity  at  the  hinge  line  and  at  the  flap  side  edges;  however,  this 
singular  part of the  pressure  distribution  may  be  obtained  directly  by  the  methods  of  matched 
asymptotic  expansions  (ref. 2), and  the  remainder is a  regular  distribution  that  may  be  adequately 
represented by a  series  of the usual form.  Thus  the pressure  loading  induced  by  the  trailing-edge  flap 
is written  as 

where gm and f, are given as  before  by  equations (7) and (8), and g&B,X)  is the  flap  pressure  mode 
for  the  specific  flap  and wing geometry  considered.  Expressions  for gf  will be given below. 

The  collocation  points  (xi,sj)  are  distributed in a  rectangular  matrix  in  the ($,I) coordinate 
system.  On wing  panels  without  the  trailing-edge  flap,  the  chordwise  distribution is still given by 
equation (10). On  panels  with the  flap, half the  points  are  ahead  of  the  hinge  line  and  half  behind; 
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the  distribution  in  each  interval  being  uniform  in 4. Again the wing  leading  edge  and  trailing  edge 
and  the  flap  hinge  line  are  avoided  in  distributing  the  points.  The  spanwise  distribution  of  the 
collocation  points is equally  apportioned  among  each wing panel,  with  and  without  a  flap,  avoiding 
the edges  of  panels (which  are  at  the  flap  edges,  the wing tips,  or  kinks  in  the wing planform);  the 
distribution  in  each  panel  is  uniform  in I .  

When only  a  finite  number  of  pressure  modes  and  collocation  points  are  considered,  and  the 
pressure  expansion  (eq. (19)) is  substituted  into  the  integral  equation  (eq.  (l)),  a  system  of  linear 
algebraic  equations  results 

Here  since the pressure  mode gf is known,  it has  been  moved to  the  left side  of the  equation  to give 
an  effective  downwash  Vn* 

- 
v *  vn - n = - - "1f)ij u u  

Equation  (20)  is  of  exactly  the  same  form  as  equation (9), and may  be inverted  for  the  pressure 
coefficients an, when the  effective  downwash Vn* has  been  calculated.  The  total  pressure 
distribution,  including  both  the  singular  mode gf and  the  regular  modes a,,,, may  then be 
integrated to  find  the  forces  acting  on  the wing. 

The  coefficients (1nm)ij are  still  given by  equation (16). The  integrand is a  product of the 
regular pressure  mode  and  the  kernel  function;  since  these  do  not involve the  flap,  the  numerical 
evaluation  of  (Inm)ij  proceeds  exactly  as  described  above  for  the wing without  the  flap. 

The  equivalent  downwash  involves  the  integral  over  the wing surface of the  flap  pressure  times 
the  kernel  function 

where (If& is the  downwash  at  the  collocation  point (Xi,Sj) due  to  the  flap pressure  mode.  The 
numerical  evaluation  of (1f)ij follows  that  of  (Inm)ij,  with  the  integrals  broken  into  more  intervals 
to handle  the  singuiarities  of  the  pressure  function g f  The  chordwise  integration, in addition  to 
being broken  at  the  collocation  point, is broken  at  the  flap  hinge if the spanwise  station  includes  the 
flap or is near  the  edge of the  flap (fig. 4(a));  the  latter  criterion is quantitatively  that rs2 < 0.1 
where rs is the  distance  to  the  flap  side edge. The  integral  over  each  interval  (there  being  one,  two, 
or  three  intervals  now) is evaluated  by  a  gaussian  quadrature  over 8. The  spanwise  integration, in 
addition  to being broken  at  each  kink  in  the wing planform  and  a  distance E either  side of the 
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collocation  point, is broken  at  each  flap  side  edge  (fig.  4(b)).  The  integral  over  each wing panel 
(except  for  the  strip  including  the  collocation  point,  which  is  handled  separately  again, as outlined 
above) is evaluated  numerically  by  a  gaussian  quadrature  over A. 

a.  Chordwise  integration b. Spanwise  integrotion 

Figure 4.- Numerical  integration of flap  pressure  mode. 

THE  FLAP  PRESSURE MODE 

Formulas  are  presented  here  for  gf,  the  singular  part  of  the  pressure  due t o  the  trailing-edge 
flap.  A  logarithmic  singularity  at  the  hinge  line  and  the  side  edges  is  caused  by  the  flow  turning 
instantaneously  through  a  finite  angle.  The  singularity is a  local  phenomenon,  independent  of  the 
presence  of  the  edges of the wing or  other  flap edges;  consequently,  the  methods of matched 
asymptotic  expansions may be  applied to  solve for  the  pressure  singularity  directly.  Landahl  (ref. 3)  
has  used this  technique  for several configurations;  his  results will be  consolidated  and in some cases 
extended  here.  Expressions  for - G / p u 2   d u e   t o  unit sf are given for several edge  configurations; 
when  combined  appropriately  for  a  particular  flap  geometry  and  modified to  have  correct  behavior 
at  the wing  edges,  these  expressions give the  flap pressure  mode gp Quantities  that  enter  into  these 
expressions  are 

dXC 
tan A=- 

dY 

where 0 is the  Prandtl-Glauert  compressibility  factor. 

The  pressure  due to  a  flap  hinge on a  two-dimensional  airfoil, o r  a hinge  line on a wing far 
from  the  flap  side  edges is 

1 
T/~N/COS A P*D = - h ( x  - xC)* (26) 
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Landahl  considers  only  an  unswept  hinge  line at  the  flap  comer;  he  finds  the  corner  pressure 
function  (eq.  (27) of ref. 3) from  a  line  of  sources  distributed  along  the  flap  hinge  line.  This  result 
may  be  extended to obtain  the  pressure  due  to  a  swept  hinge  corner  by  matching  the  pressure  due 
to  a  line of sources  distributed  along  a  straight  line  at  an  angle  A(yL) to the pressure due  to  a  swept 
hinge  line (P~D) .   The  pressure  due to a  left  comer  plus  the  flap  hinge  line  is  then 

1 PN2 
PLh = - TPN/COS A - xC)’ + 2  tan  h(y - y ~ ) ( x  - xc) + - (Y - YL)’ cos2 A I” 

Similarly  the  pressure  due t o  a  right  comer  plus  the  flap  hinge  line is 

1 ONZ 
P m = -  

.rrpN/cos A 
- xC)’ + 2 tan  A(y - YR)(X - xc) + - 

cos2 A (Y - YR)’ 1 ”’ 

where y~ is the  location  of  the  left  comer  and YR is the  location of the  right  corner;  tan A must 
have a  continuous  definition  beyond  the  flap  corner. 

The  pressure  due to  a  flap hinge line  with  left  and  right  corners  may  be  found  by  adding  PLh 
and  PRh  and  subtracting  their  common  part 

For  a  flap  with  a  kink in the hinge  line at  ys (Le., tan A = dxc/dy  discontinuous  there)  the  pressure 
is obtained as a  sum  of  terms  for  each  continuous  segment 

where tan A must  have  a  continuous  definition  beyond  the  end  points of each  term. 

Landahl  only gives the  pressure  for  the  flap  side  edge  with  one  end,  at  the  hinge  line.  The 
pressure  including  the  effect  of  ending  the  side  edge  at  the wing  trailing  edge  may  be  found  by 
adding  the  terms  due to the  two  ends  and  subtracting  their  common  part.  The  result  for  a  left side 
edge at y, is 
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Similarly, for  a  right  side  edge  at ys 

'Rse - -'Lse 
- 

It  should  be  noted  that  the wing tip is not a  side  edge;  a  flap  side  edge  is  where  the  flap  surface  joins 
the wing surface. 

The  expressions  for  the  pressure  due  to  the  flap  hinge  line  and  side  edges  must  be  modified  to 
have the  correct  behavior  at  the wing  edges.  This is accomplished  by  multiplying  the  uncorrected 
pressure  functions  by  factors  that have the value  unity  at  the  flap  boundary  and  go  to  zero  at  the 
wing edges  with the  square  root  of  the  distance  from  the  edge.  The  hinge  line  pressure is multiplied 
by chordwise  and  spanwise  factors: 

The  chordwise  factor is 

for  x < xc 

XTE - X 

XTE - XC 
for x > xc 

(34) 

The  spanwise  factor  depends  on  the wing geometry  and  flap  geometry;  several cases are  considered 
below. 

1 .  For  a wing with  pointed  or  rounded  tips 

f s =  1 

2. For  a wing with  square  tips,  and  a  full  span  flap 

3. For  a wing with  square  tips,  and  a  part  span  flap 

4. Other  configurations  (e.g.,  a  flap,  with  an  inboard  edge,  extending  to  the  tip)  may  be 
handled  by  combining the above  kinds  of  factors. 
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The  corrected side-edge pressure  function is 

where  the  spanwise  factor is 

f s =  { 

and  the  chordwise  factor is 

(39) 

The  construction of PRse is similar. C 

The  flap  pressure  mode gf is obtained  by  adding  the  appropriate  corrected  pressure  function 
for  each  flap  hinge  line  and  each  flap  side  edge.  A  flap  hinge  line  with  a  kink is effectively  two 
separate hinge  lines,  each  with  two  corners,  but  with  no  side  edge  at  the  kink.  A  better 
representation is obtained if for  a  symmetrical  wing,  the  flap  pressure  function is not  continued 
from  one  side to  the  other  (i.e.,  on  each  side  of  the wing centerline  only  the  pressure  due to  the  flap 
on  that  side is used).  The  pressure  due  to  the  flap  on  the  other  side is a  regular  part,  and 
convergence is improved if it is dropped.  Since  the wing is symmetrical,  the  pressures  on  the  two 
sides do  match  at  the  center.  This  consideration  for  the  kinked  flap  does  not  affect  the  flap  pressure 
function  for  a  flap  that is continuous  (and  not  kinked)  across  the  centerline. 

An antisymmetrical  flap  configuration (i.e., ailerons)  may  also  be  handled  simply  by  using 
antisymmetrical  span  loading  functions  gm  and  constructing  an  antisymmetrical  flap  pressure 
mode. 

EXAMPLES AND COMPARISONS  WITH EXPERIMENT 

Some  results  of  applying  the  method  described  above  are  presented  here  for  the  use  of 
lifting-surface  theory  with  a  trailingedge  flap.  It was found  that  three  to  four  chordwise  pressure 
modes  (fn)  and  three  to  four spanwise  modes  (gm) gave an  adequate  representation  of  the  regular 
part of the pressure  distribution;  the  number  of  modes  required will vary  with  the wing and  flap 
geometry,  however,  and  should  be  determined  for  each  new case considered. 
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Figure 5.- Wing lift  coefficient  calculated  by  lifting- Figure 6.- Wing moment  coefficient  (about  the  quarter 
surface  theory,  for  a  rectangular  wing  with  trailing- chord)  calculated  by  lifting-surface  theory,  for  a  rec- 
edge  flap;  the  experimental  point is for  a  wing  with tangular  wing  with  a  trailing-edge  flap;  the  experimen- 
aspect  ratio 4.6 (ref. 7). tal  point is for a wing  with  aspect  ratio 4.6 (ref. 7). 

Flop chord 
Wing chord 

Figure 7.- Wing hinge  moment  coefficient  calculated 
by  lifting-surface  theory,  for  a  rectangular  wing 
with a trailing-edge  flap. 
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Figures 5, 6, and 7 show  the  variation  of 
l i f t ,  pitching  moment,  and  hinge-moment 
coefficients  with  flap  chord to wing chord  ratio 
for a  rectangular wing with full-span  trailing  edge 
and  steady,  unit  flap  deflection ( 6 f =  1 ,  k = 0). 
The two-dimensional  airfoil  results  (Theodorsen 
t h e o r y )   a r e   c o m p a r e d   w i t h   t h e  
lifting-surface-theory  results for wings of  aspect 
ratios  of 8 and 4.6. Also shown  are  experimental 
points  for  a wing of 4.6 aspect  ratio  with  a 
23 percent  chord trailing-edge flap  (ref. 7). The 
lift  coefficient (fig. 5) shows  a  substantial  effect 
of  aspect  ratio;  the  lifting  line  theory  result, 
CL = 2rAR/(AR + 2), for a 100 percent  chord 
flap is  also  indicated  in  the  figure. 

Data  are given in reference 8 for  the loading 
on  an  aspect  ratio 2, triangular  wing  with  a 
full-span  trailing-edge flap  (constant  flap  chord, 
10.7 percent  of  the wing root  chord)  deflected 
9.5" (nominal 10"). The wing CL,  Cm,  and  Ch 
from  the  experiment  and  calculated  by  the 



lifting-surface theory  are  compared  below. 

Coefficient  Experiment  Theory 
CL  0.23 0.228 
Cm -.08 -.090 
c h  -.l 1 "114 

Figure 8 compares  the  experimental  and  theoretical  section  lift  coefficient;  the  lift  coefficient is 
based on  the local chord,  which  goes to zero  at  the  tip  faster  than  the  actual  loading,  resulting in the 
large lift  coefficients  at  the  tip.  Figure 9 compares  the  experimental  and  theoretical  section  center 
of pressure location,  expressed as a  fraction of the local chord.  The  differences  between  the 
experimental  and  theoretical values for  the  loading  on  this wing  are well within  the  accuracy of the 
experimental  data. 
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Figure 8.- Section  lift  coefficient on triangular Figure 9.- Section  center of  pressure on a  triangular 
wing  with  full  span  trailing-edge  flap; 6 f =  9.5", wing  with  full  span  trailing-edge  flap; 6 r =  9S0, 
flap  chord = 10.7 percent  wing root chord. flap  chord = 10.7 percent wing root chord. 
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Figure 10.- Section  lift  coefficient on a  swept  wing 
with  a  partial  span  flap; 6 f =  52.1" (area  suction 
on flap  leading  edge). 

Ames  Research  Center 
National  Aeronautics  and  Space  Administration 

and 
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Moffett  Field,  Calif.,  94035, Nov. 8,   1971 

A final wing  was considered,  one  that  included 
both  a  partial  span  flap  and  sweep of the  flap  hinge 
line  (ref. 9). The wing had  an  aspect  ratio  of  4.785,  a 
taper  ratio of 0.5 13, and 35" sweep of the  quarter 
chord  line.  The  flap  extended  from  yL = 0.135 YTIP 
t o  Y R  = 0 . 5  YT]p, with  a  constant  chord, 
14.5  percent  of  the wing root  chord.  The  flap 
deflection was 52.1",  with  area  suction on the  flap 
leading  edge to maintain  attached  flow.  Figure 10 
compares  the  experimental  and  theoretical  section 
lift  coefficient  for  this  wing,  showing  good 
agreement. 

The  limited  examples  and  comparison  with 
experiment  presented  in  this  section  demonstrate  the 
applicability of the  method  described  above  for  the 
use of lifting-surface  theory on a wing with  a 
trailingedge  flap.  The  details  of  the  numerical 
procedures  and  the  construction  of  the  flap  pressure 
function  depend  heavily on the  specific wing and 
flap  geometry  considered.  Therefore  it is not 
possible to  give a single general  flap  pressure  mode 
and  solution  procedure  that will handle all possible 
cases. The  formulas  and  methods  presented  here, 
however,  should  be  sufficient to allow the  practical 
use  of  lifting-surface  theory  for  the  calculation  of 
t h e  loading  on  any given  wing and  flap 
configuration. 
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